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A VELOCITY FORMULATION FOR FLOW PAST 
A SYMMETRIC PROFILE WITH A WAKE 
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SUMMARY 
A model having velocity components as basic unknowns is presented for calculation of two-dimensional 
flow past a symmetric profile with a wake in a channel. A modified least squares functional is used for the 
finite element solution of velocities. The determination of the position of the free streamline is treated as an 
optimum design problem. The concepts of cost function, geometry parameter and sensitivity derivative 
are employed. Numerical results are compared with published results obtained with streamfunction 
formulations. 
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INTRODUCTION 

Ideal (incompressible, irrotational) fluid flow is often used as an approximation when modelling 
flow past profiles with a wake. This approximation is fairly well applicable in the region outside 
the wake.' The boundary between the outside flow and the wake is characterized by a constant 
pressure, and accordingly by a constant velocity. The boundary is called the free streamline. The 
position of the free streamline is unknown in the beginning, which is the main source of difficulties 
in solving wake flows. 

Problems of flow past profiles have traditionally been formulated and solved in terms of the 
streamfunction (as in fact have many other ideal fluid flow problems). The solution procedures2-6 
are typically such that the problem is transformed from the physical plane to a convenient space 
where it is formulated anew and where a numerical method is applied. The use of variable finite 
elements connected with the minimization of a functional over a variable region has also been 
suggested.' 

In this paper a direct method is presented-'direct' meaning that velocity components are used 
as basic unknowns. The approach leads to a notably simple formulation. In addition, it is often 
the velocities that we are really interested in, for instance if the forces acting on the profile were to 
be calculated. From the streamfunction the velocities can be obtained only after accuracy- 
decreasing numerical derivations. 

FORMULATION O F  THE PROBLEM 

The geometry of the problem is shown in Figure 1. Owing to the symmetry, it is only necessary to 
consider the region ABCDEF. 

0271-2091/89/091113-07$05.00 
0 1989 by John Wiley & Sons, Ltd. 

Received 16 June 1988 



1114 S. M. RASANEN 

2h 

- 
X 

Figure 1. Geometry of the problem: 0, geometry point on the free streamline; 0, geometry point on the surface of the 
profile; *, node 

The velocity components u and u in the x and y directions satisfy the continuity equation and 
the irrotationality condition: 

au au 

ax ay 
-+-=O in ABCDEF, 

au au 
ax ay 
-___  -0 in ABCDEF. 

Far from the profile the flow in the channel is assumed to be uniform. The boundary conditions 
are 

u=q, onAB, (34  
u = o  on AB, BC, EF, FA, 

q,=O on CD, DE, 

q = q c  on DE, ( 3 4  
where qm denotes the far field magnitude of the velocity, qn is the velocity component perpen- 
dicular to the boundary and q, is the constant value of the velocity on the free streamline. 

It should be emphasized that the position of the free steamline DE is not known, including the 
position of the separation point D, and that there are two conditions to be satisfied on this 
boundary. 

SOLUTION PROCEDURE 

Description of the free streamline 

The free streamline is described with a smooth curve that passes through so called geometry 
points (see Figure 1). Between two successive geometry points the position of the streamline is 
given by the mapping 

N l W l +  N2(5)G + N3(5)r2 + N4(5)G, (4) 
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where rl and r, are the position vectors of the two geometry points and r; and r; are the 
corresponding derivatives with respect to the parameter 5. The values of 5 range from 0 to 1. The 
functions N i  are the Hermitian cubic polynomials 

The positions of the geometry points and the tangent vector directions are calculated in the 
course of the procedure, as explained later. Before equation (4) can be applied, the tangent vectors 
r; and r; must also be known. They are calculated according to the equations* 

d 
r; =-tl, 

t ,  - e  
d 

t ,  .e r;=-t,, 

where t, and t ,  are the unit tangent vectors at the geometry points, e is the unit vector in the 
direction of the chord r = (1 - Orl + 5rz connecting the geometry points, and d is the chord length. 
The geometric significance of expressions (6) is that with the same value of 5 the line segment 
joining a point on the curve and a point on the corresponding chord is perpendicular to the 
chord. 

The shape of the profile is discretized in just the same way as the free streamline. The profile 
geometry of course remains fixed during the calculations, whereas the position of the streamline 
changes. 

The finite element mesh is generated to follow the free streamline and the surface of the profile 
as shown schematically in Figure 1. 

Velocities 

A modified least squares functional 

forms the basis of the finite element discretization. The velocity components are approximated 
with a Co-continuous representation (nine-noded isoparametric Lagrangean quadrilaterals) and 
the Lagrange multipliers I, and I, with a C - ‘-continuous representation (elementwise constant 
values). The standard least squares functional does not give accurate enough results for reason- 
able meshes. The addition of the Lagrange multiplier terms improves the accuracy, which can be 
demonstrated for instance by studying the overall mass conser~ation.~ 

Stationarity of functional (7) gives rise to a system of equations 

K a = p  (8) 
for solving the unknown velocity components at the nodes of the element mesh together with the 
Lagrange multipliers. 

Numerical experiments indicate that the following boundary conditions, for instance, are 
sufficient to solve equations (8): the direction of the velocity is given at all boundary nodes and the 
magnitude of the velocity is given at one node. Thus the velocity formulation allows the boundary 
conditions to be modelled realistically, which is of great use in many fluid flow problems, for 
instance in open channel flow.” 

The actual velocity boundary conditions used here will be specified in the example section. 
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Optimum design approach 

So called design parameters are defined with respect to a current geometry. Referring to the 
shape of the free streamline, the design parameters are selected to be a change in the position of 
the geometry point in the direction perpendicular to the streamline and a change in the direction 
angle of the tangent to the streamline at the geometry point. Thus there are two design 
parameters connected with one geometry point. The design parameters are denoted by bj. 

The selection of the design parameters must be modified at the geometry point coinciding with 
the separation point. To maintain the point in contact with the profile, it is required as a first 
approximation that in a change 

r ( < + A W r ( t ) +  Ir‘(OIA4t=r(t)+A~t,  (9) 
where r is the position vector of the geometry point, 5 is its current co-ordinate on the boundary 
curve of the profile and t is the unit tangent vector. Equation (9) gives the change in the 4-co- 
ordinate A< = Ab/l r’(()l when a change of magnitude Ab is made in the position of the geometry 
point. At the separation point the tangent vector direction is not an independent geometry 
parameter. The streamline is tangential to the surface of the profile and thus the tangent direction 
is determined by the position of the point. 

The determination of the position of the free streamline is based on minimizing the cost 
function 

w=e (4  -4c)’ds x.SC Wi(qi-qc)’, (10) I 1 

which requires boundary condition (3d) to be satisfied in a least squares sense. The integration is 
over the free streamline. Because the integral must be calculated numerically, it is replaced by the 
given pointwise counterpart where the summation is over the integration points on the stream- 
line; wi denotes the integration weight. 

Changes in the design parameters lead to changes in velocities. The new value of the velocity at 
an integration point due to changes in the design parameters is 

where the summation is over the number of design parameters. Equation (11) defines new 
quantities cij7 called sensitivities. 

Expression (1 1) is substituted into cost function (10) which is then minimized with respect to the 
changes Abj. The minimizing conditions 

aW/aAbj=07 j =  1,2, . , . , (12) 
lead to a linear system of equations for the unknowns Abj. 

in turn and by employing the approximate relation 
The sensitivities are calculated by making a small predefined change in every design parameter 

cij  x Aqi/Abj. (13) 
The whole element mesh is generated again after a change Abj. Changes in velocities are 
calculated from the approximate equation 

KAa = Ap - AKa (14) 
derived by differentiating equation (8) with respect to a design parameter. When solving equation 
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(14) for the changes ha, use is made of the fact that the matrix K has already been triangularized in 
connection with equation (8). 

The above described procedure for calculating the changes Abj is repeated until convergence is 
achieved. 

NUMERICAL EXAMPLES 

Three-point Gaussian quadrature per element edge has been employed in connection with cost 
function (10). The predefined changes A b y  of the design parameters needed for calculating the 
sensitivities have been selected so that Abp”/4h=10-’ for a change in the position of the 
geometry point (h is half of the width of the channel), and the change in the direction angle of 
the tangent is adjusted to produce roughly the same maximum change in the position 
of the streamline. The convergence criterion has been maxIAbjl/Aby < lo-’. 

The numerical examples to be considered have been selected mainly because they allow 
comparisons with previously published results obtained with streamfunction models. 

i 

Circular profile 

As a first example, flow past a circular profile is considered (Figures 2 and 3). The radius of the 
circle is h/4. Velocities qca and q, are both assumed to be known. As boundary conditions to 
equations (8), the nodal values of the velocity components are given according to equations (3a), 
(3b) and (3c). 

Figure 2 shows the free streamline where qc = qm. The result is obtained in twelve iterations 
from the assumed streamline position also shown in the figure. When solving the changes from 
the system of equations (12), the tangent vector direction at the outflow section is fixed to be 
horizontal. 

I 1 1 1 1 I I I I I I I  I I 1  I I 

Figure 2. Flow past a circular cylinder, qc=qm, 6 geometry points, 30 integration points, 54 elements: ---, assumed 
streamline; -, result 

I 

Figure 3. Flow past a circular cylinder, qc =067 q m ,  3 geometry points, 12 integration points, 48 elements: ---, assumed 
streamline; -, result 
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Figure 4. Flow past a wedge, 5 geometry points, 24 integration points, 48 elements: ---, assumed streamline; -, result; 
. . . . . Dormiani er 

The angle 2 at the separation point (defined in Figure 2) is found to be 41.8O. This can be 
compared with cz =42.8" obtained by Dormiani and Bruch4 with a streamfunction method. 

Figure 3 shows the result obtained with qc = 0.67 qm.  The Bernoulli equation p + ($)pq2 = 
constant ( p  is the density) shows that if the pressure is required to have a minimum in the wake, 
then yc should be the maximum velocity in the flow. However, wakes with qc<q ,  are frequently 
treated in the literature-starting with Southwell and Vaisey'l- --and they can be thought of as a 
result from some kind of artificial blowing or ventilation. 

When qc<qmr the wake is finite and terminates with a cusp. The point where the streamline 
reaches the channel centrcline is unknown. Therefore only the three geometry points marked in 
Figure 3 are employed and the integration in cost function (10) is accordingly over four elements 
only. Seven iterations were needed to obtain the result. At the separation point 2=62.1". 
Dormiani and Bruch4 give the value 60.8". 

In the velocity formulation the value of the volume flow Q is exact due to boundary 
condition (3a). The streamfunction models give only an approximate volume flow, for example 
Q/Q,,,,, =0.958 in the test case with qc=0.67 qa,.4 

Wedge 

The model is applicable also when the position of the separation point and the velocity at 
the free streamline are given, but the inflow velocity is assumed to be unknown. The wedge of 
Figure 4 is a profile where the geometry determines the separation point. The half-angle ,!I of the 
wedge is 30' and the side length is 0.7875 h. 

The velocity boundary conditions must be modified to correspond to the assumptions. 
Condition (3a) is dropped and the given value of qc is used at the separation point. 

Two geometry parameters are now fixed: the position of the separation point and the tangent 
vector direction at the outflow section. The tangent is again set to be horizontal. 

The result shown in Figure 4 has been obtained in seven iterations. Also drawn in the figure is 
the result given by Dormiani et ~ l . , ~  reproduced from a figure in their article. Their value of ycu is 
0501 qc, while the present calculations give the average qcc =Q/h=0-492 qc. 

I t  may be emphasized that in the velocity formulation the result, including the value of qcu, is 
obtained after performing the described iterative procedure just once. In the streamfunction 
models6-' iterations must be performed with several assumed values of some of the unknowns 
(depending on the model), and the final result is selected according to some criterion, usually based 
on physical considerations. 
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CONCLUSION 

In view of the numerical results obtained, the Clelocity formulation provides an efficient and 
conceptually straightforward alternative to the streamfunction methods for solving flows past 
profiles. 
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